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Using wavelet de-noised spectra in NMR screening
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Abstract

Principal component analysis (PCA) is a commonly used algorithm in multivariate analysis of NMR screening data. PCA sub-
stantially reduces the complexity of data in which a large number of variables are interrelated. For series of NMR spectra obtained
for ligand binding, it is commonly used to visually group spectra with a similar response to ligand binding. A series of filters are
applied to the experimental data to obtain suitable descriptors for PCA which optimize computational efficiency and minimize
the weight of small chemical shift variations. The most common filter is bucketing where adjacent points are summed to a bucket.
To overcome some inherent disadvantages of the bucketing procedure we have explored the effect of wavelet de-noising on multi-
variate analysis, using a series of HSQC spectra of proteins with different ligands present. The combination of wavelet de-noising
and PCA is most efficient when PCA is applied to wavelet coefficients. This new algorithm yields good clustering and can be applied
to series of one- or two-dimensional spectra.
� 2005 Elsevier Inc. All rights reserved.

Keywords: NMR screening; PCA; Wavelet transform
1. Introduction

NMR spectroscopy has become an important tech-
nique in screening for protein inhibitors. Both, NMR
spectra of isotopically labeled proteins or the spectra
of the inhibitors can be used for ligand screening [1,2].
When protein spectra are employed to detect ligand
binding the enormous sensitivity of the lH and 15N
chemical shifts of the protein backbone for small geo-
metric or electrostatic changes induced by ligand bind-
ing is exploited. For ligand based screening a great
variety of NMR methods including transferred NOEs
[3,4], saturation transfer difference (STD) experiments
[5–7], ePHOGSY[8], diffusion editing [9] or NOE pump-
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ing [10,11] are used. Most of these techniques can be uti-
lized for rational drug design studying the effect of
specific changes in inhibitors as well as for screening
of large numbers of inhibitors. NMR also starts to play
a significant role in applications where biological sam-
ples such as bio-fluids or tissue extracts are the subject
of investigations [12]. In fact, NMR screening using pre-
dominantly one-dimensional spectra of body fluids has
become an important technique in metabonomics to
study toxicity and gene function [13]. Similarly, NMR
has been used to screen fruit juices [14,15] or beer [16]
as a measure of quality control.

To analyze large numbers of spectra for changes and
similarities efficient pattern recognition methods such as
principal component analysis (PCA) are commonly
used. Principal components are linear combinations of
the original data which help to visualize similarities in
an ensemble of spectra. Since all principal components
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are orthogonal and ordered with respect to maximum
variance between the samples, the largest two or three
principal components provide an excellent representa-
tion of variability within a set of data. Spectra with little
variance compared to the reference spectrum will form a
group around the reference. Outliers usually represent
hits in ligand screening. Unfortunately PCA is computa-
tionally expensive, even if only few principal compo-
nents are calculated. Several data manipulations are
usually applied prior to PCA, mainly to reduce the data
size, but also to minimize artifacts. Simple thresholding
helps to eliminate noise-related alterations between the
spectra. In addition, in a procedure called �bucketing�
[17], adjacent data points (in the case of two-dimen-
sional spectra a rectangular subsection of the spectrum)
are added to one �bucket� thus reducing the amount of
data points. This procedure is broadly used in common
NMR screening software. Bucketing helps to eliminate
artifacts by averaging small chemical shift perturbations
arising from small variations in pH or other sample con-
ditions and reduces the size of the data. The �bucket�
descriptors which are subsequently used in PCA main-
tain much of the information of the spectrum although
details which are only available at high resolution may
be lost. Bucketing is also prone to introduce artifacts
when peaks experience small chemical shift perturba-
tions at the border between buckets. In this case a large
change may be detected for a small effect. Although un-
likely, another artifact may arise from cancellations in
the bucket when different points which contribute to
one bucket add and subtract equal or similar intensities.
In this case no or only a small overall effect is left in the
bucket.

With higher resolution offered by increasing field
strengths of NMR spectrometers PCA should preserve
the full information available in the spectra. Here we
demonstrate that a combination of PCA analysis with
wavelet de-noising yields improved clustering with re-
duced artifacts. Application of PCA in wavelet space
after thresholding preserves the resolution in the original
data, is insensitive to small chemical shift changes and
does not show the artifacts which are common to buc-
keting schemes.
2. Theoretical background

2.1. Principal component analysis

Principal component analysis is a linear transforma-
tion which can be used to visualize similarities and dif-
ferences in large data sets. If X is a data matrix which
contains m NMR spectra in columns with n frequencies
in rows, we can estimate a reference centered covariance
matrix of X as CX = (X � Xr) Æ (X � Xr)

T, where Xr is the
reference data matrix which represents a reference spec-
trum. In the examples shown here the HSQC spectrum
of the protein without ligand was used as a reference.

For fully uncorrelated NMR spectra, all off-diagonal
elements of the CX matrix are zero and the diagonal ele-
ments represent the variances of the individual rows.
For correlated data the off-diagonal elements are the
covariances between the different spectra. Noisy data
represent a high-dimensionality problem because noisy
NMR spectra are never fully correlated.

To reduce the dimensionality of a series of NMR
spectra contained in the matrix X we try to find a linear
transformation Y = M Æ X to a new set of variables
which have a diagonal covariance matrix CY (so that
each of its elements is uncorrelated). The covariance
matrices of X and Y are related by

CX ¼ MT � CY �M : ð1Þ
Because CY is a diagonal and M is an orthonormal ma-
trix, the columns of MT are the eigenvectors of CX while
the diagonal elements of CY are the corresponding
eigenvalues. If there are linear combinations among
the elements of the original data matrix X then some
of the eigenvalues in CY will vanish. For highly similar
but not identical data sets the values of the eigenvalues
in CY will be small. For the screening data used in this
work these small eigenvalues represent spectra which
are similar to the reference. PCA uses the covariance
matrix of a set of experiments to find a transformation
to a new set of uncorrelated variables. PCA starts with
the covariance matrix of all the original data and ranks
the principal components with respect to similarity to
the reference. The most common algorithm used to cal-
culate principal components is the singular value decom-
position which solves the eigen decomposition problem
in Eq. (1). For computational efficiency it is important
that only the largest eigenvalues are calculated.

2.2. Discrete wavelet transform

Several recent publications showed the potential of
wavelet based de-noising for NMR spectroscopy [18–
21]. The principles of wavelet transforms and noise sup-
pression employing wavelet transforms were described
in detail in several excellent monographs [22,23]. Don-
oho and Johnstone [24,25] showed that suppression of
wavelet coefficients has desirable statistical properties
in the suppression of noise.

The discrete wavelet transform (DWT) decomposes a
signal using a set of base functions Wjk which are derived
from a single mother wavelet W by dyadic dilatations (j)
and translations about (k)

WjkðxÞ ¼ 2j=2Wð2jx� kÞ: ð2Þ
These wavelets are shifted by k and scaled by j and have
compact support, i.e., the wavelet is zero outside the fi-
nite interval [k2�j, (k + 1)2�j]. The wavelets Wjk form an
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orthonormal basis of L2, the space of square integrable
functions. For this reason any function S (x) 2 L2 can be
represented by the base functions Wjk and corresponding
scaling functions Ujk (U = father wavelet)

SðxÞ ¼
X
k

akU0kðxÞ þ
X
j

X
k

bjkWjkðxÞ; ð3Þ

where the coefficients are

ak ¼
Z

SðxÞU�
0kðxÞdx; bjk ¼

Z
SðxÞW�

jkðxÞdx:

For a vector of function values S = {S (x1),S (x2), . . . ,
S (xN)}

0 the discrete wavelet transform can be represented
in matrix form as

w ¼ WS; ð4Þ

where W is an N · N orthogonal matrix associated with
the chosen orthonormal wavelet basis and w is a N · 1
vector comprising both, wavelet coefficients and scaling
coefficients. Since the wavelet is scaled and shifted the
WT yields a time-frequency representation of the signal.

Several wavelets were designed to fulfill the basic
requirements to have a compact support and to form
an orthonormal system. The most basic wavelet is the
Haar wavelet, a simple step function. More commonly
used wavelets are Daubechies wavelets, Coiflets and
Symmlets. In this work we used Symmlets with eight
vanishing moments.

2.3. Wavelet de-noising

The basis of wavelet de-nosing is the property of wave-
lets to represent smooth signals with a sparse set of coef-
ficients. Therefore, suppression of small coefficients can
be used to de-noise signals. Many different algorithms
to determine noise-related wavelet coefficients have been
proposed. Global hard- or soft-thresholding are the most
widely used methods [24,25]. In hard-thresholding all
coefficients below a threshold k are zeroed, while in the
soft-thresholding besides zeroing all the other coefficients
are shrunk towards zero by subtracting k. In the present
work we used soft-thresholding which provides good re-
sults on 15N-edited HSQC spectra. The threshold k was
determined using �universal thresholding� [25] with a value
of k ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logN

p
, where r represents the noise variance

estimated on the highest decomposition level and N the
total number of data points. The overall process of de-
noising consists of a wavelet transform followed by thres-
holding and an inverse wavelet transform.

In addition to wavelet thresholding which has a
smoothing effect on the spectra and suppresses noise it
is also possible to apply a multiresolution analysis
(MRA) [26]. It is based on the idea that a function or
a signal can be approximated at different dilatation lev-
els. This concept has previously been exploited for sol-
vent suppression in NMR spectra in [27]. In a MRA
only a subset of the resolution levels can be used to re-
store the signal. This may be useful to suppress low or
high frequency signal components represented at low
or high dyadic levels. In this work both, soft-threshold
de-noising and the suppression of coefficients at the low-
est resolution levels were used to obtain determinants
for the subsequent PCA.
3. Materials and methods

The data used in this study consisted of 101 15N,1H-
HSQC spectra of the hsp90 protein in the presence of
different ligands recorded on a BRUKER DMX 600
spectrometer. 1024 complex points were recorded in
the direct dimension and 128 increments were recorded
for each spectrum. All spectra were processed using
NMRLab [28] with a quadratic sine apodization prior
to the fast Fourier transform in both dimensions and
automated two-dimensional phase correction (Günther,
Ludwig unpublished). After stripping lines without sig-
nals from the spectra a data matrix of 512 · 512 · 101
real points was recovered for subsequent PCA analysis.

The 101 HSQC spectra were scaled using the mean of
the largest signals with minimum variability within the
data set. Subsequently different protocols were em-
ployed for the three analysis schemes shown in Fig. 1.
For scheme A a threshold value of 20% of the largest
point in each spectrum was applied prior to adding data
points in 16 · 16 point bucket cells. Subsequently com-
mon baseline regions of all spectra with zero intensity
after thresholding were removed and the two-dimen-
sional HSQC spectra were concatenated into one-di-
mensional objects prior to PCA analysis. In scheme B

a wavelet de-nosing step was added before thresholding
and bucketing using a one-dimensional discrete wavelet
transform in both dimensions. The overall process of
wavelet de-noising consists of four stages: (I) data scal-
ing with respect to the average noise level estimated by
the median absolute deviation of the wavelet coefficients
on the first dyadic level (r, see Section 2), (II) a discrete
wavelet transform using a Symmlet (8) quadrature mir-
ror filter and a low-frequency cutoff of 4, (III) a global
soft-thresholding of the wavelet coefficients applying
the universal threshold k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logN

p
(where N is the to-

tal number of data points) and (IV) an inverse discrete
wavelet transform which returns a matrix with the same
size as the input data matrix. The subsequent steps
(thresholding, bucketing, concatenation, removal of
common zeroes, and PCA) were identical with scheme
A. In scheme C the scaled data were subject to a wavelet
transform and soft-thresholding with identical parame-
ters as in scheme B. Additional MRA was applied by
suppressing four low-frequency dyadic levels. Data
points zeroed in all spectra were eliminated after wavelet
thresholding followed by concatenation.



Fig. 1. Schematic representation of different PCA data reduction
schemes: (A) bucketing scheme, (B) bucketing on de-noised data, and
(C) PCA on wavelet coefficients.
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Automated analysis of the PCA clusters was used to
evaluate the PCA result. The clustering algorithm was
based on the hierarchical clustering analysis [29], where
objects are linked together based on the network of
Euclidean distances between pairs of objects. In a first
step binary clusters of objects in close proximity were
formed. As objects were paired into binary clusters,
the newly formed clusters were grouped into larger clus-
ters until a hierarchical tree was formed. Finally, the
hierarchical tree was divided into clusters of objects by
detecting the natural groupings in the cluster tree. To al-
low the formation of a main cluster surrounded by sev-
eral outliers, a tight clustering threshold was used to cut
the hierarchical tree. The principal components were
scaled with respect to the largest distance in the data
set and a clustering factor was estimated as the mean
scaled distance between the PCA outliers and the closest
neighbor belonging to the main cluster. Compression

factors were calculated as the ratio between the number
of elements of the original data matrix and the number
of elements of the pre-processed matrix used for the sub-
sequent PCA. The de-noising factor describes the relative
number of points eliminated by thresholding. In schemes
A/B it is calculated as the quotient of the number of ele-
ments of the data matrix zeroed by thresholding and the
total number of elements of the original matrix. For
scheme C the quotient of the number of wavelet coeffi-
cients eliminated by thresholding and the total number
of elements of the original matrix was used.

All routines were programmed in the MATLAB (The
Mathworks) programming environment. The wavelet
de-noising routines were based on the WAVELAB802
wavelet toolbox for MATLAB [18].
4. Results

Here we show howwavelet de-noising andMRA anal-
ysis can be efficiently combined with PCA to analyze
large series of NMR data. To demonstrate the advantage
of a wavelet filter compared to the commonly used
bucketing approach we examined different pre-process-
ing schemes to reduce artifacts and the data size prior
to PCA analysis. As a test data set we used 101 HSQC
spectra of hsp90 with different ligands added. Data
processing included a quadratic sine apodization prior
to the fast Fourier transformation in both dimensions,
scaling, thresholding, and concatenation of two-dimen-
sional data matrices to data vectors (see Section 3).

Fig. 1 shows the three different PCA schemes which
were compared. In scheme A a standard bucketing ap-
proach with 16 · 16 buckets was used to reduce the size
of the data. The result of this bucketing procedure is
presented in the first panel of Fig. 2 which shows a plot
of the first three principal components (pc1, pc2, and
pc3). A cluster between 0 and 100 on pc1 and pc2 and
�40 and 40 on pc3 (blue �+�) represents spectra with lit-
tle change compared to the reference. Positive hits in the
screening appear with negative values in pc2 (green �+�).
In addition, spectra 42 and 28 (red �+�) appear with large
values in pc3. The corresponding spectra for both cases
show few effects compared to the reference. Fig. 2D
shows the HSQC spectrum of the complex form (protein
with ligand, blue) superimposed on the reference spec-
trum (without ligand, red) for the false hit 42. In con-
trast, Fig. 2E shows an example for a positive hit with
various small chemical shift changes compared to the
reference.

In scheme B (Fig. 1) a wavelet de-nosing step was ap-
plied prior to thresholding and bucketing (see Section 3
for details of the procedure). Here wavelet shrinkage is
used for de-noising and smoothing of the spectra but
not for data compression. Combined de-noising/bucket-
ing depicted in Fig. 2B exhibits improved clustering in
spectra of protein with non-binding ligands. In addition,
some hits are clearly separated (green �+�). Spectrum 42
appears again as a false hit (red �+�) whereas spectrum
28 joins the cluster around the reference. The improve-
ment for spectrum 28 can be explained by the smoothing
effect of wavelet thresholding on the spectrum.



Fig. 2. (A) The first three principal component obtained using scheme A with 16 · 16 bucketing prior to PCA for a set of 101 HSQC spectra of hsp90
recorded with different ligands. Each �+� represents one HSQC spectrum. (B) Principal components obtained using scheme B with 16 · 16 bucketing
on wavelet de-noised data using a Symmlet(8) quadrature mirror filter and soft-threshold de-noising prior to PCA. (C) Principal components
obtained employing scheme C using a wavelet transform with a Symmlet(8) quadrature mirror filter prior to PCA. (D) Spectrum 41 (blue)
superimposed to the reference spectrum (red, without ligand) showing significant chemical shift changes. (E) Spectrum 42 (blue) superimposed to the
reference spectrum (red, without ligand) showing few chemical shift changes. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this paper.)
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In scheme C (Fig. 1), PCA was applied directly to the
wavelet coefficients. Since the wavelet transform is a uni-
tary transformation (Eq. (4)), eigenvalues of the wavelet
coefficients will be equivalent to the eigenvalues of the
original data. Therefore, a PCA analysis performed di-
rectly on the wavelet coefficients conveys the multivari-
ate properties as if it was applied to the original data.
The wavelet coefficient thresholding has a triple effect:
it eliminates the stochastic component of the spectra
(de-nosing), minimizes the insignificant spectral



N. Trbovic et al. / Journal of Magnetic Resonance 173 (2005) 280–287 285
perturbations (smoothing) and decreases the size of the
data matrix (compression). Fig. 2C shows good cluster-
ing for the first three principal components obtained by
applying the PCA on the sparse matrix of thresholded
wavelet coefficients. In this case spectra 42 and 28 ap-
pear on the edge of the cluster around the reference.

For a quantitative analysis of the three schemes we
have evaluated a compression factor, a de-noising fac-
tor, a clustering factor and the CPU time for the PCA
(Table 1). Compression, de-nosing and clustering factors
are better for scheme B compared to scheme A owing to
the reduced noise in spectra. For scheme C the de-nois-
ing factor is better than for schemes A and B owing to
the larger number of zeroes in the thresholded matrix.
Table 1
Compression factors, de-noising factors, clustering factors, and
elapsed CPU timea

Scheme Compression
factor

De-noising
factor

Clustering
factor

CPU
timea (s)

A 1008 0.858 0.106 0.58
B 1231 0.861 0.198 0.41
C 11 0.903 0.346 15.25

a CPU time required for the principal component analysis of the
pre-processed data.

Fig. 3. (A) Example of peaks which cause a border effect in the
bucketing schemes. Blue corresponds to spectrum 42 and red to the
reference. The green grid represents the bucket borders. (B) Summed
squared differences between each of the 101 spectra and the reference
spectrum calculated at the bucket borders. For a better visualization
all the spectra identified as true hits were excluded from this analysis
(zeroes in the plot). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this paper.)
However, the compression factor is lower because the
number of common zeroes between all spectra is much
lower for de-noising in wavelet space than for de-noising
of the actual spectra. The separation of outliers from the
cluster representing spectra of protein with non-binding
ligands is greatly improved in scheme C. This leads to a
higher clustering factor compared to schemes A and B.
The lower compression rate of scheme C leads to in-
creased CPU time.

Further analysis of the false hit 42 in the bucketing
schemes showed that it is not the outcome of the local
noise dissimilarities but rather a consequence of the arti-
facts resulting from peak shifts in the vicinity of the
bucket borders. Fig. 3A shows an example of signals
in spectrum 42 which cause border artifacts in bucket-
ing. When several effects of this kind are accumulated
in one spectrum relatively large principal components
will be observed. This cumulative effect can be shown
by computing the sum of the squared differences be-
tween the reference and each spectrum at bucket bor-
ders. Fig. 3B shows that this function has a clear
maximum for spectrum 42 due to an accumulation of
bucker border artifacts. The effect of artifacts on bucket
borders has also been confirmed using simulated spectra
(not shown).
5. Discussion

While PCA has become a standard technique for data
reduction and visualization of large data sets, the prep-
aration of NMR data for PCA remains difficult. Filters
applied prior to PCA should reduce the size of data to
improve computational efficiency and minimize the sen-
sitivity towards small irrelevant shifts in the NMR data.
This has typically been achieved employing bucketing as
a simple and highly efficient filter. Unfortunately buc-
keting may introduce artifacts when peaks move on bor-
ders between buckets and in the case of spectra with
large variations of the background noise levels. The
addition of spectral points into one bucket causes a
modest reduction of noise depending on the size of the
bucket. However, large buckets would be required to
achieve a noticeable noise reduction. Applying a thresh-
old to the experimental data is a frequently used alterna-
tive. Nevertheless, sharp thresholds tend to distort the
buckets leading to more severe artifacts. In addition,
with increasing resolution of spectra at higher magnetic
fields with proton frequencies of up to 900 MHz, typical
bucketing schemes reduce the effective resolution sub-
stantially. For this reason more subtle methods of
smoothing and noise suppression are required.

In this work it has been shown that wavelet de-nois-
ing is a suitable alternative with desirable properties for
subsequent PCA analysis. Here we have tested several
schemes which combine the wavelet transforms to sup-
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press noise-related coefficients with the PCA analysis.
When PCA was applied to spectra after wavelet de-nois-
ing subsequent bucketing was still required to reduce the
size of the data (scheme B). This scheme showed im-
proved clustering owing to the reduced noise contribu-
tion to buckets. It also eliminates the noise-related
artifacts observed for spectrum 28, but not the bucket-
ing artifacts observed for spectrum 42.

Further improved clustering was achieved when PCA
was directly applied to the wavelet coefficients (scheme
C). This scheme eliminates noise-related (spectrum 28)
and bucketing artifacts (spectrum 42) efficiently. The
scheme offers a modest and scalable smoothing for one-
or two-dimensional NMR data. The result can be opti-
mized by selecting threshold levels in wavelet space and
suitable levels to be suppressed in MRA. The effect of
MRA will become more pronounced for data sets with
baseline distortions typical for one-dimensional spectra.

Although the formation of data buckets is computa-
tionally less demanding than calculating the wavelet
transformation, the additional computational effort
seems justified considering the preservation in fine struc-
ture and the reduction in artifacts that can be achieved.
The computing time of the lifting scheme used to obtain
the wavelet coefficients [23] is proportional to the num-
ber of data points N of the data set and therefore by a
factor of log (N) faster than the fast Fourier transforma-
tion. In scheme C where PCA is performed in wavelet
space no inverse transform is required. Once data are
represented in wavelet space different thresholding or
MRA schemes can be applied rapidly.

In conclusion, we propose a novel algorithm for the
analysis of NMR screening data which combines the
advantages of wavelet data representation with data
visualization and clustering obtained by PCA. Using
PCA and MRA in wavelet space we were able to obtain
improved clustering and to avoid noise- and clustering-
related artifacts. This approach should be commonly
useful for many applications employing PCA in
chemometrics.
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